Many-body problems with composite particles and q-Heisenberg algebras

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1995 J. Phys. A: Math. Gen. 28685
(http://iopscience.iop.org/0305-4470/28/3/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 02/06/2010 at 01:12

Please note that terms and conditions apply.

Many-body problems with composite particles and q-Heisenberg algebras

S S Avancini† and G Krein \ddagger
\dagger Departamento de Física-CFM, Universidade Federal de Santa Catarina, CP 476-88040-900 Florianópolis-SC, Brazil
\ddagger Instituto de Física Teórica-Universidade Estadual Paulista Rua Pamplona, 145-01405-900 São Paulo SP, Brazil

Received 28 July 1994, in final form 6 December 1994

Abstract

We propose to employ deformed commutation relations to treat many-body problems of composite particles. The deformation parameter is interpreted as a measure of the effects of the statistics of the internal degrees of freedom of the composite particles. A simple application of the method is made for the case of a gas of composite bosons.

In recent years there has been much interest in the subject of deformations of the basic commutation relations of Fermi and Bose fields. One focus of interest is on possible (small) violations of the Fermi and Bose statistics by particles ('quons') with annihilation and creation operators that obey deformed commutation relations which interpolate between bosons and fermions [1]. Another focus of interest closely related, not only in physics but also in mathematics, is the subject of quantum algebras [2], the origins of which are in the study of the Yang-Baxter equations connected with the quantum inverse scattering problem. The discovery by Macfarlane [3] and Biedenharm [4] of a new realization of the quantum algebra $s u(2)_{q}$ in terms of q-analogues of the harmonic oscillator has given rise to speculations on possible applications in real physical problems. In addition to speculations on small violations of Fermi or Bose statistics [1] and on possible generalizations of quantum mechanics at higher energies (e.g. in the early universe) [5], quantum algebras have been used with relative success in phenomenological studies of deformed nuclei [6], diatomic molecules [7], spin chains [8] and anyonic oscillations with fractional statistics [9]. Despite successful phenomenological applications, a clear physical meaning of the deformation parameter q is lacking.

In this paper we propose employing a q-Heisenberg algebra [10] as a convenient tool to describe many-body problems involving composite particles (i.e. not point-like). We argue that the physical meaning of the deformation parameter is that it is a measure of the effects of the statistics of the internal degrees of freedom of the composite particles, and its value depends on the 'degree of overlap' of the extended structure of the particles in the medium. The interpretation that deformed algebras describe composite particles is not new and can be found in several places in the literature (see e.g. [1]); here we explicitly demonstrate the realization of this in a simple example. Many-body problems involving composite particles have complications in addition to the usual ones involving point particles due to the simultaneous presence of 'macroscopic' (composites) and 'microscopic' (constituents)
degrees of freedom. Due to the internal degrees of freedom, the algebra of the creation and annihilation operators of the composite particles deviates from the usual canonical ones for point particles; it becomes deformed. It is therefore natural to speculate on the possibility that the deformation of the algebra of the creation and annihilation operators would provide a convenient way to take the microscopic degrees of freedom of the composites into account effectively. The deformation of the algebra is the price one pays for not taking the microscopic degrees of freedom explicitly into account. One can hope for the success of such a program for systems where the degree of overlap of the internal structures of the particles is not very large, in the sense that the system is not dissolved into its constituents. A related work [11] describes the possibility of using deformed commutation relations to treat correlated fermion pairs in a single- j nuclear shell.

We start with a heuristic discussion on the relation of the deformation parameter with the composite nature of bosons. We consider a composite boson state with quantum number α as a bound state of two distinct fermions:

$$
\begin{equation*}
A_{\alpha}^{\dagger}|0\rangle=\sum_{\mu \nu} \Phi_{\alpha}^{\mu v} a_{\mu}^{\dagger} b_{\nu}^{\dagger}|0\rangle \tag{1}
\end{equation*}
$$

where $\Phi_{\alpha}^{\mu \nu}$ is the bound-state wavefunction, a_{μ}^{\dagger} and b_{μ}^{\dagger} are the fermion creation operators, and $|0\rangle$ is the vacuum state. The quantum number α stands for the centre-of-mass momentum, the internal energy, the spin and other internal degrees of freedom of the composite boson. The μ and ν stand for the space and internal quantum numbers of the constituent fermions. The sum over μ and ν is to be understood as a sum over discrete quantum numbers and an integral over continuous variables.

The fermion creation and annihilation operators satisfy canonical anticommutation relations:

$$
\begin{align*}
& \left\{a_{\mu}, a_{\nu}\right\}=\left\{a_{\mu}^{\dagger}, a_{v}^{\dagger}\right\}=0 \quad\left\{b_{\mu}, b_{v}\right\}=\left\{b_{\mu}^{\dagger}, b_{v}^{\dagger}\right\}=0 \\
& \left\{a_{\mu}, a_{v}^{\dagger}\right\}=\delta_{\mu, \nu} \quad\left\{b_{\mu}, b_{v}^{\dagger}\right\}=\delta_{\mu, v} \tag{2}
\end{align*}
$$

It is convenient to work with normalized wavefunctions $\Phi_{\alpha}^{\mu \nu}$, such that

$$
\begin{equation*}
\langle\alpha \mid \beta\rangle=\delta_{\alpha, \beta} \tag{3}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\sum_{\mu \nu} \Phi_{\alpha}^{\mu \nu *} \Phi_{\beta}^{\mu \nu}=\delta_{\alpha, \beta} \tag{4}
\end{equation*}
$$

Using the fermion anticommutation relations of equation (2) and the wavefunction normalization equation (4), one can easily show that the composite boson operators satisfy the following commutation relations:

$$
\begin{equation*}
\left[A_{\alpha}, A_{\beta}\right]=\left[A_{\alpha}^{\dagger}, A_{\beta}^{\dagger}\right]=0 \quad\left[A_{\alpha}, A_{\beta}^{\dagger}\right]=\delta_{\alpha, \beta}-\Delta_{\alpha \beta} \tag{5}
\end{equation*}
$$

where $\Delta_{\alpha \beta}$ is given by

$$
\begin{equation*}
\Delta_{\alpha \beta}=\sum_{\mu \nu} \Phi_{\alpha}^{\mu \nu *}\left(\sum_{\mu^{\prime}} \Phi_{\beta}^{\mu^{\prime} v} a_{\mu^{\prime}}^{\dagger} a_{\mu}+\sum_{\nu^{\prime}} \Phi_{\beta}^{\mu \nu^{\prime}} b_{\nu^{\prime}}^{\dagger}, b_{\nu}\right) \tag{6}
\end{equation*}
$$

One can also easily show the following commutation relations:

$$
\begin{equation*}
\left[a_{\mu}, A_{\alpha}^{\dagger}\right]=\sum_{\mu^{\prime} \nu^{\prime}} \delta_{\mu, \mu^{\prime}} \Phi_{\alpha}^{\mu^{\prime} \nu^{\prime}} b_{\nu^{\prime}}^{\dagger} \quad\left[b_{\nu}, A_{\alpha}^{\dagger}\right]=-\sum_{\mu^{\prime} v^{\prime}} \delta_{v, \nu^{\prime}} \Phi_{\alpha}^{\mu^{\prime} v^{\prime} a_{\mu^{\prime}}^{\dagger}} \tag{7}
\end{equation*}
$$

The composite nature of the bosons is evident from the presence of $\Delta_{\alpha \beta}$, it is a sort of a 'deformation' of the canonical boson algebra. The effect of this term becomes unimportant
in the infinite tight binding limit, i.e. in the limit of point-like bosons. Equation (7) shows the lack of kinematical independence of the microscopic operators a_{μ} and b_{ν} from the macroscopic ones A_{α}^{\prime} s.

Now let us consider a system of N composite bosons in a box of volume V at zero temperature. If the bosons were ideal point-like particles, the ground state of the system would be the one where all bosons condense in the zero momentum state. In the case of composite bosons, the closest analogue of the ideal-gas ground state is

$$
\begin{equation*}
|N\rangle=\frac{1}{\sqrt{N!}}\left(A_{0}^{\dagger}\right)^{N}|0\rangle \tag{8}
\end{equation*}
$$

where A_{0}^{\dagger} is the creation operator of a composite boson in its ground state (ground state Φ) and with zero centre-of-mass momentum. Due to the composite nature of the bosons, this state incorporates kinematical correlations implied by the Pauli exclusion principle which operates on the constituent fermions. Among other effects, the Pauli principle forbids the macroscopic occupation of the zero momentum state. The closest analogue to the boson occupation number in the state (8) is

$$
\begin{equation*}
N_{0}=\frac{\langle N| A_{0}^{\dagger} A_{0}|N\rangle}{\langle N \mid N\rangle} \tag{9}
\end{equation*}
$$

In order to evaluate (9), we consider a spin-zero boson and use for the spatial part of Φ a simple Gaussian form such that the RMS radius of the boson is r_{0}. To lowest order in the density of the system $n=N / V, N_{0}$ is given by

$$
\begin{equation*}
N_{0}=N\left(1-\gamma n r_{0}^{3}\right) \tag{10}
\end{equation*}
$$

where $\gamma=4 \pi^{-3 / 2} \simeq 1$ is a numerical factor that comes from the functional form of the wavefunction. If we had taken another functional form for Φ, we still would have obtained for N_{0} the result of equation (10), but γ would have taken a different value.

It is apparent from equation (10) that in the limit of infinite tight binding, $r_{0} \rightarrow 0$, one has the familiar Bose-Einstein condensation. For finite values for the size of the bosons, the effects of the Pauli principle become important and the amount of condensed bosons is depleted. Moreover, from (10) one has that if the size of the bound state is of the order of the mean separation of the bosons in the medium, $d \sim n^{-1 / 3}$, the depletion is almost total. The depletion of the condensation is a direct consequence of the deformation of the boson algebra by the term $\Delta_{\alpha \beta}$.

Next we show that the effect of the composite nature of the boson can effectively be taken into account by employing a deformed boson algebra. The deformed boson commutation relations are given by

$$
\begin{equation*}
A_{\alpha} A_{\beta}^{\dagger}-q^{2} A_{\beta}^{\dagger} A_{\alpha}=\delta_{\alpha, \beta} \tag{11}
\end{equation*}
$$

where q^{2} is the deformation parameter of the algebra; A_{α} annihilates the vacuum

$$
\begin{equation*}
A_{\alpha}|0\rangle=0 \tag{12}
\end{equation*}
$$

Note that no commutation relation can be imposed on $A_{\alpha}^{\dagger} A_{\alpha}^{\dagger}$ and $A_{\alpha} A_{\alpha}$. However, as remarked by Greenberg [1], similarly to the case of normal Bose commutation relations, no such rule is needed for practical evaluation of expectation values of polynomials in A_{α} and A_{α}^{\dagger} when (12) holds. Such matrix elements can be evaluated with the repeated use of equation (11) solely; annihilation operators are moved to the right using (11) until they annihilate the vacuum or creation operators are moved to the left using the adjoint of (11) until they annihilate the vacuum.

If one writes $q^{2}=1-x$, the deformed commutator can be written as

$$
\begin{equation*}
\left[A_{\alpha}, A_{\beta}^{\dagger}\right]=\delta_{\alpha, \beta}-x A_{\alpha}^{\dagger} A_{\beta} . \tag{13}
\end{equation*}
$$

The similarity of this with the second equation of (5) is evident. In some sense, the weighted (by the Φ 's) fermion operators $a_{\mu^{\prime}}^{\dagger} a_{\mu}$ and $b_{\mu}^{\dagger} b_{\nu^{\prime}}$ in (5) are effectively modelled by the term $x A_{\alpha}^{\dagger} A_{\beta}$.

In the same spirit as in the previous case, we take as the closest analogue of the ideal boson gas ground state the $N q$-boson state

$$
\begin{equation*}
|N\rangle=\frac{1}{\sqrt{[N]!}}\left(A_{0}^{\dagger}\right)^{N}|0\rangle \tag{14}
\end{equation*}
$$

where $[N]!=[N][N-1][N-2] \cdots 1$ is the q-factorial, and

$$
\begin{equation*}
[N]=\frac{1-q^{2 N}}{1-q^{2}} \tag{15}
\end{equation*}
$$

As before, the operator $A_{0}^{\dagger} A_{0}$ is the number operator in the zero deformation limit only. The effect of the deformation can be evaluated taking the expectation value of the $A_{0}^{\dagger} A_{0}$ in the state $|N\rangle$ of equation (14). To evaluate the expectation value, we make use of the result [3]

$$
\begin{equation*}
A_{\alpha}^{\dagger} A_{\alpha}=\left[\hat{N}_{\alpha}\right]=\frac{1-q^{2 \hat{N}_{\alpha}}}{1-q^{2}} \tag{16}
\end{equation*}
$$

where \hat{N} is the number operator in the deformed algebra

$$
\begin{equation*}
\hat{N}_{0}|N\rangle=N|N\rangle . \tag{17}
\end{equation*}
$$

Using the result of (16), one obtains, to lowest order in x,

$$
\begin{equation*}
N_{0}=\frac{1}{x}\left[1-(1-x)^{N}\right] \simeq N\left(1-\frac{1}{2} N x\right) . \tag{18}
\end{equation*}
$$

Comparing this result with the one of equation (10) it is clear that the effect of the deformation is such that

$$
\begin{equation*}
N x \sim N r_{0}^{3} / V \tag{19}
\end{equation*}
$$

that is, the effect of the deformation parameter is proportional to the ratio of the volume occupied by the bosons to the volume of the system. It is clear that when this ratio is small, meaning that there is no considerable overlap of the boson internal wavefunctions, the system behaves as a normal boson gas.

This completes our heuristic discussion on the plausibility of using a q-Heisenberg algebra as a means of treating effectively the internal degrees of freedom of composite particles in a many-body system. Next, we consider the thermodynamics of an ideal q-bose gas [12, 13]. This example is taken to illustrate the effects of the constituent fermions on the thermodynamic properties of a gas of composite bosons. The Hamiltonian of the deformed bose gas is defined [12] as

$$
\begin{equation*}
H=\sum_{i} \epsilon_{i} A_{i}^{\dagger} A_{i} \tag{20}
\end{equation*}
$$

where A_{i}^{\dagger}, A_{i} are, respectively, the creation and annihilation operator of a q-boson in the state of energy ϵ_{i}. The energy ϵ_{i} is the kinetic energy plus the internal ground-state energy of the boson.

It follows from equation (16) that the energy eigenvalues of H are given by

$$
\begin{equation*}
E(n)=\sum_{i} \epsilon_{i}\left[n_{i}\right]=\sum_{i} E_{i}\left(n_{i}\right) \tag{21}
\end{equation*}
$$

where $n=\sum_{i} n_{i}$ and n_{i} are the occupation numbers associated with the state of energy ϵ_{i}. In order to study the thermodynamics of the deformed system we evaluate the grand canonical partition function:

$$
\begin{equation*}
\mathrm{Z}=\operatorname{Tr}^{-\beta(H-\mu \hat{N})}=\mathrm{e}^{-\beta \Omega} \tag{22}
\end{equation*}
$$

where $\beta=1 / k T, \mu$ is the chemical potential and \hat{N} is the number operator. It follows from equations (20) and (22) that in the representation where the Hamiltonian is diagonal:

$$
\begin{equation*}
Z=\prod_{i} Z_{1}(i, \beta, \mu) \tag{23}
\end{equation*}
$$

with

$$
Z_{1}(i, \beta, \mu)=\sum_{n_{i}=0}^{\infty} \mathrm{e}^{-\beta\left(E_{i}\left(n_{i}\right)-\mu n_{i}\right)}
$$

As the exact calculation of Z_{1} is not possible, we consider its expansion in terms of the parameter x, where we recall that $q^{2}=1-x$. (Note that this corresponds to an expansion in the density of the q-gas.) In order to carry out such expansion we note that

$$
[n]=\frac{1-q^{2 n}}{1-q^{2}}=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k} x^{k-1}
$$

From the equation above and equation (23) we obtain for the expansion of Z_{1} up to second order in x the following result:

$$
\begin{align*}
Z_{1}(i, \beta, \mu)= & Z_{0}\left(z, y_{i}\right)\left[1+y_{i}\left(z \mathrm{e}^{-y_{i}}\right)^{2} Z_{0}^{2}\left(z, y_{i}\right) x+\left(\frac{1}{2} y_{i}^{2}+\left(3 y_{i}-1\right) y_{i} z \mathrm{e}^{-y_{i}} Z_{0}\left(z, y_{i}\right)\right.\right. \\
& \left.\left.+3 y_{i}^{2}\left(z e^{-y_{i}}\right)^{2} Z_{0}^{2}\left(z, y_{i}\right)\right)\left(z \mathrm{e}^{-y_{i}}\right)^{2} Z_{0}^{2}\left(z, y_{i}\right) x^{2}+\cdots\right] \tag{24}
\end{align*}
$$

In the above the usual definitions of fugacity $z=\mathrm{e}^{\beta \mu}$ and $y_{i}=\beta \epsilon_{i}$ have been used and

$$
Z_{0}\left(z, y_{i}\right)=\sum_{n=0}^{\infty}\left(z \mathrm{e}^{-y_{i}}\right)^{n}=\frac{1}{1-z \mathrm{e}^{-y_{i}}}
$$

From equations (22), (23) we obtain for $\beta \Omega$, up to second order in x,

$$
\begin{align*}
\beta \Omega=-\sum_{i} & \log Z_{0}\left(z, y_{i}\right)-\sum_{i} y_{i}\left(z \mathrm{e}^{-y_{i}}\right)^{2} Z_{0}^{2}\left(z, y_{i}\right) x \\
& -\sum_{i}\left[\frac{y_{i}^{2}}{2}\left(z \mathrm{e}^{-y_{i}}\right)^{2} Z_{0}^{2}\left(z, y_{i}\right)+\left(3 y_{i}-1\right) y_{i}\left(z \mathrm{e}^{-y_{i}}\right)^{3} Z_{0}^{3}\left(z, y_{i}\right)\right. \\
& \left.+\frac{5}{2} y_{i}^{2}\left(z \mathrm{e}^{-y_{i}}\right)^{4} Z_{0}^{4}\left(z, y_{i}\right)\right] x^{2}+\mathrm{O}\left(x^{3}\right) \tag{25}
\end{align*}
$$

Proceeding as usual, we consider the system contained in a large container of volume V, and replace the summations by an integral:

$$
\sum_{i} f\left(\epsilon_{i}\right) \rightarrow \frac{V}{(2 \pi)^{3}} \int \mathrm{~d}^{3} k f(k)
$$

We take for the kinetic energy of the boson the non-relativistic expression $\epsilon_{i}=\epsilon_{i}(k)=\gamma k^{2}$, where $\gamma=1 / 2 \mathrm{~m}$. In the case of a composite boson one could have, in addition to the kinetic energy, internal excitation energies. Our choice of ϵ_{ζ} represents the energy spectrum
of composite bosons in their internal ground states. Since the constant internal ground-state energy of the bosons does not play any role in the thermodynamic properties of the system, one needs to consider only the kinetic energy spectrum. Thus the pressure per unit volume can be obtained straightforwardly:

$$
\begin{align*}
\beta p \equiv-\beta \Omega= & a\left\{g_{5 / 2}(z)+\frac{3}{2}\left[g_{3 / 2}(z)-g_{5 / 2}(z)\right] x\right. \\
& \left.+\left[\frac{11}{16} g_{1 / 2}(z)-\frac{3}{2} g_{3 / 2}(z)+\frac{11}{16} g_{5 / 2}(z)\right] x^{2}+\mathrm{O}\left(x^{3}\right)\right\} \tag{26}
\end{align*}
$$

where $a=(m /(2 \pi \beta))^{3 / 2}$ and $g_{l}(z)=\sum_{k=1}^{\infty} z^{k} / k^{l}$.
With this, one can obtain the virial expansion of the equation of state. The density, ($n=N / V$), is obtained by the usual expression:

$$
n=\frac{N}{V}=\left(\frac{\partial p}{\partial \mu}\right)_{T, V}=z\left(\frac{\partial \beta p}{\partial z}\right)_{\beta}
$$

Therefore, using equation (26), one obtains

$$
\begin{align*}
n=a\left\{g_{3 / 2}(z)\right. & +\frac{3}{2}\left[g_{1 / 2}(z)-g_{3 / 2}(z)\right] x \\
& \left.+\left[\frac{13}{16} g_{-1 / 2}(z)-\frac{3}{2} g_{1 / 2}(z)+\frac{11}{16} g_{3 / 2}(z)\right] x^{2}+\ldots\right\} \tag{27}
\end{align*}
$$

In the low-density regime one may write

$$
\begin{equation*}
z=a_{1}\left(\frac{n}{a}\right)+a_{2}\left(\frac{n}{a}\right)^{2} \tag{28}
\end{equation*}
$$

Using this in equation (27), and keeping only terms up to second order in x one obtains:

$$
\begin{align*}
& a_{1}=1 \\
& a_{2}=-\frac{1}{2^{3 / 2}}\left(1+\frac{3}{2} x-\frac{3}{16} x^{2}\right) \tag{29}
\end{align*}
$$

Through the substitution of z given in equation (28) into equation (25) the virial expansion is obtained:

$$
\begin{equation*}
\beta p=n(1+B n+\cdots) \tag{30}
\end{equation*}
$$

where

$$
B=-\frac{1}{2^{3 / 2} a}\left(\frac{1}{2}+\frac{3}{4} x-\frac{21}{32} x^{2}\right)
$$

Note that in the limit of zero deformation, $x=0$, one obtains the usual result [14]. For finite, small x, one sees that B becomes more negative than in the limit of zero deformation. Thus the deformation has the effect of an attractive potential. This result is easily understood in terms of the interpretation of the deformation parameter as related to the internal fermion degrees of freedom of the composite boson: the Fermi statistics of the constituents cause a depletion of the boson occupation numbers, and in the sum of equation (21) this depletion has the effect of an attractive potential, $\sum_{i} \epsilon_{i}\left[n_{i}\right] \leqslant \sum_{i} \epsilon_{i} n_{i}$.

Concluding, we have discussed the possibility of studying many-body problems with composite particles in terms of deformed algebras for the creation and annihilation operators (q-Heisenberg algebras) of the composites. We have considered the example of a gas of bosons and examined the role of the deformation of the algebra of the boson operators. The interpretation of the deformation is that it models the effects of the Pauli principle operating on the constituent fermions. Among other effects, the deformation of the algebra causes the depletion of the single particle occupation of the bosons.

Although we have discussed the example of a system of composite bosons, it is clear that the same methods are applicable to composite fermions. We plan to study such a
case in a future publication. Another interesting subject for future work is the study of interacting composite bosons (or fermions). In particular, it would be very interesting to explore the role of the deformation on phase transitions. Such a study might be of interest to superconductivity/superfluidity and quark-gluon plasma phase transitions.

Acknowledgments

This work was partially supported by CNPq and FAPESP.

References

[1] Greenberg O W 1991 Phys. Rev. D 434111
[2] Curtright T, Fairlie D and Zachos C (eds) 1991 Proc. Quantum Groups Workshop (Argonne, IL) (Singapore: World Scientific)
[3] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[4] Biedenham L C 1989 J. Phys. A: Math. Gen. 22 L873
[5] Ng Y J 1990 J. Phys. A.: Math. Gen. 231023
Shabanov S V 1993 J. Phys. A: Math. Gen. 262583
[6] Raychev P P, Roussev R P and Smirnov Yu F 1990 J. Phys. G: Nucl. Phys. 16 L137
Bonatsos D, Argyres E N, Drenska S B, Raychev P P, Roussev R P and Smirnov Yu F 1990 Phys. Lett. B 251477
Bonatsos D, Drenska S B, Raychev P P, Roussev R P and Smimov Yu F 1991 J. Phys. G: Nucl. Phys. 17 L67
[7] Bonatsos D, Drenska S B, Raychev P P, Roussev R P and Smimov Yu F 1990 Chem. Phys. Lett. 175300
[8] Batchelor M T, Mezincescu L, Nepomechie R I and Rittenberg V 1990 J. Phys. A: Math. Gen. 23 L141
Kulish P P and Sklyanin E K 1991 J. Phys. A: Math. Gen. 24 L435
[9] Lerda A and Sciuto S 1993 Nucl. Phys. B 401613
[10] Fairlie D B and Zachos C 1991 Proc. NATO ARW on Quantum Field Theory, Statistical Mechanics, Quantum Groups, and Topology (Miami) ed T Curtright
[11] Bonatsos D 1992 J. Phys. A: Math. Gen. 25 L101
Bonatsos D, Daskaloyannis C and Faessler A 1994 J. Phys. A; Math. Gen. 271299
[12] Chaichian M, Gonzalez Felipe R and Montonen C 1993 J. Phys. A: Math. Gen. 264025
[13] Martin-Delgado M 1991 J. Phys. A: Math. Gen. 24 L1285
[14] Landau L D and Lifshitz E M 1966 Statistical Physics 2nd edn (New York: Pergamon) equation (55.15) p 151

